Evaluate the surface integral

1) $\iint_{S} x^{2} y z d S, S$ is the part of the plane $z=1+2 x+3 y$ that lies above the rectangle $[0,3] \times[0,2]$.
2) $\iint_{S} x y d S, S$ is the triangular region with vertices $(1,0,0),(0,2,0)$, and $(0,0,2)$.
3) $\iint_{S} y z d S, S$ is the part of the plane $x+y+z=1$ that lies in the first octant.
4) $\iint_{S} x^{2} z^{2} d S, S$ is the part of the cone $z^{2}=x^{2}+y^{2}$ that lies between the planes $z=1$ and $z=3$.
5) $\iint_{S} z d S, S$ is the surface $x=y+2 z^{2}, 0 \leq y \leq 1,0 \leq z \leq 1$.
6) $\iint_{S} x y d S, S$ is the boundary of the region enclosed by the cylinder $x^{2}+z^{2}=1$ and the planes $y=0$ and $x+y=2$
7) $\iint_{S}\left(x^{2} z+y^{2} z\right) d S, S$ is the hemisphere $x^{2}+y^{2}+z^{2}=4, z \geq 0$
8) $\iint_{S} \sqrt{1+x^{2}+y^{2}} d S, S$ is the helicoid with vector equation $\overrightarrow{\mathbf{r}}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+v \mathbf{k}, 0 \leq u \leq 1,0 \leq v \leq \frac{\pi}{2}$.

Evaluate the surface integral $\iint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$ for the given vector field $\overrightarrow{\mathbf{F}}$ and the oriented surface S. In other words, find the flux of $\overrightarrow{\mathbf{F}}$ across S. For closed surfaces, use the positive orientation.
9) $\overrightarrow{\mathbf{F}}(x, y, z)=x y \mathbf{i}+4 x^{2} \mathbf{j}+y z \mathbf{k}, S$ is the surface $z=x e^{y}, 0 \leq x \leq 1,0 \leq y \leq 1$, with upward orientation.
10) $\overrightarrow{\mathbf{F}}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z^{4} \mathbf{k}, S$ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ beneath the plane $z=1$ with downward orientation.
11) $\overrightarrow{\mathbf{F}}(x, y, z)=y \mathbf{j}-z \mathbf{k}, S$ consists of the paraboloid $y=x^{2}+z^{2}, 0 \leq y \leq 1$, and the disk $x^{2}+z^{2} \leq 1, y=1$.
12) $\overrightarrow{\mathbf{F}}(x, y, z)=x \mathbf{i}+2 y \mathbf{j}+3 z \mathbf{k}, S$ is the cube with vertices $(\pm 1, \pm 1, \pm 1)$.
13) The temperature at the point (x, y, z) in a substance with conductivity $K=6.5$ is $u(x, y, z)=2 y^{2}+2 z^{2}$. Find the rate of heat flow inward across the cylindrical surface $y^{2}+z^{2}=6,0 \leq x \leq 4$.

